basearts - White Balance:

Color temperature - http://en.wikipedia.org/wiki/Color_temperature

In digital photography, color temperature is sometimes used interchangeably with white balance, which allow a remapping of color values to simulate variations in ambient color temperature. Most digital cameras and RAW image software provide presets simulating specific ambient values (e.g., sunny, cloudy, tungsten, etc.) while others allow explicit entry of white balance values in Kelvin. These settings vary color values along the blue–yellow axis, while some software includes additional controls (sometimes labeled tint) adding the magenta–green axis.

Temperature Source
1,700 K Match flame
1,850 K Candle flame
2,700–3,300 K Incandescent light bulb
3,350 K Studio "CP" light
3,400 K Studio lamps, photofloods, etc.
4,100 K Moonlight, xenon arc lamp
5,000 K Horizon daylight
5,500–6,000 K Typical daylight, electronic flash
6,500 K Daylight, overcast
9,300 K CRT screen
Note: These temperatures are merely characteristic;
considerable variation may be present.


Kelvin
- Wikipedia http://en.wikipedia.org/wiki/Kelvin

The kelvin is often used in the measure of the color temperature of light sources. Color temperature is based upon the principle that a black body radiator emits light whose color depends on the temperature of the radiator. Black bodies with temperatures below about 4000 K appear reddish whereas those above about 7500 K appear bluish. Color temperature is important in the fields of image projection and photography where a color temperature of approximately 5600 K is required to match "daylight" film emulsions. In astronomy, the stellar classification of stars and their place on the Hertzsprung-Russell diagram are based, in part, upon their surface temperature, known as effective temperature. The photosphere of the Sun, for instance, has an effective temperature of 5778 K.





Kelvin as a measure of noise

In electronics, the kelvin is used as an indicator of how noisy a circuit is in relation to an ultimate noise floor, i.e. the noise temperature. The so-called Johnson–Nyquist noise of discrete resistors and capacitors is a type of thermal noise derived from the Boltzmann constant and can be used to determine the noise temperature of a circuit using the Friis formulas for noise.